A "reduce and solve" approach for the multiple-choice multidimensional knapsack problem
نویسندگان
چکیده
The multiple-choice multidimensional knapsack problem (MMKP) is a well-known NP-hard combinatorial optimization problem with a number of important applications. In this paper, we present a ”reduce and solve” heuristic approach which combines problem reduction techniques with an Integer Linear Programming (ILP) solver (CPLEX). The key ingredient of the proposed approach is a set of group fixing and variable fixing rules. These fixing rules rely mainly on information from the linear relaxation of the given problem and aim to generate reduced critical subproblem to be solved by the ILP solver. Additional strategies are used to explore the space of the reduced problems. Extensive experimental studies over two sets of 37 MMKP benchmark instances in the literature show that our approach competes favorably with the most recent state-of-the-art algorithms. In particular, for the set of 27 conventional benchmarks, the proposed approach finds an improved best lower bound for 11 instances and as a by-product improves all the previous best upper bounds. For the 10 additional instances with irregular structures, the method improves 7 best known results.
منابع مشابه
Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls
This paper presents a heuristic to solve the Multidimensional Multiple-choice Knapsack Problem (MMKP), a variant of the classical 0–1 Knapsack Problem. We apply a transformation technique to map the multidimensional resource consumption to single dimension. Convex hulls are constructed to reduce the search space to find the near-optimal solution of the MMKP. We present the computational complex...
متن کاملتوسعه دو مدل ریاضی کارا برای مسئله کولهپشتی چند انتخابی فازی
Multi-choice knapsack problem is a branch of regular knapsack problem where the objects are classified in different classes and each class has one and only one representative in final solution. Although it is assumed that each object belongs to just one class, sometimes this assumption is not valid in real problems. In this case an object may belong to the several classes. In fuzzy multi-choic...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملAPPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING
In this paper, an interesting and easy method to solve the multi-dimensional knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA). Finally, ite...
متن کاملDevelopment of core to solve the multidimensional multiple-choice knapsack problem
The multidimensional multiple-choice knapsack problem (MMKP) is an extension of the 0-1 knapsack problem. The core concept has been used to design efficient algorithms for the knapsack problem but the core has not been developed for the MMKP so far. In this paper, we develop an approximate core for the MMKP and utilize it to solve the problem exactly. Computational results show that the algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 239 شماره
صفحات -
تاریخ انتشار 2014